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Microscopic structure and dynamics of a dense fluid 
near a smooth wall-video microscopy of colloidal 
spheres 
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AT&T Bell Laboratories. Murray Hill. NJ .  USA 

Received 9 July 1990 

Abstract. We measure the instantaneous atomic structure and dynamics of a three dimen- 
sional (3D) fluid near crystallization in contact with a smooth wall. Our  'atoms' are mono- 
disperse, highly charged submicrometre spheres in colloidal suspension in water. We 
simultaneously follow the positions of about 2000 spheres using video microscopy, taking 
snapshots at intervals close to the collision time of the fluid. We find that the dense fluid is 
layered in the direction perpendicular to the wall. with at least four distinct layers. We 
compare the microscopic particle dynamics of the first layer of fluid with those of a two 
dimensional (zn) layer of spheres at the same density but rigidly confined between two 
smooth walls. on a time scale at which over 96% of the spheres remain in the first 3~ layer. 
We find dramatic differences in the correlaticln lengths and times, the defect structure and 
dynamics. the particle trajectories and the self-diffusion times for the two cases. 

1. Introduction 

We have studied the influence of a hard wall on microscopic structure and dynamics in 
real space and time for a fluid very close to freezing. The sample is a monodisperse 
colloidal dispersion in water of polystyrene sulphate latex spheres with diameter d = 
0.305 I 0.006pm with surface charge -4 x lo5 electronic charges [l]. The colloidal 
spheres are maintained in intimate contact with H and OH ion exchange resin and held 
at temperature T = 29 t 0.1 "C. The spheres interact with a combination of repulsive 
screened Coulomb, hard sphere, van der Waals, and hydrodynamic forces [2]. The 
spheres are strongly repelled by the glass walls of the cell, as the walls have a comparable 
surface charge density to that of the spheres [3]. The spheres exhibit Brownian motion, 
and so have a true thermodynamic temperature. They crystallize into 3D FCC and 2~ 
triangular crystal structures at a nearest neighbour separation a = 1.35 pm [4]. In pre- 
vious experiments [4], we observed a very gradual melting transition in a ZD colloidal 
crystal confined between two smooth glass plates as its density is varied. In contrast, a 
3D FCC colloidal crystal near a smooth wall exhibits an abrupt melting transition at the 
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same in-plane density. In this paper. we contrast the structure and dynamics of high 
density 3~ and 2~ fluids just before crystallization. 

2. Experiment and results 

2.1. Experimental geometry 

Details of the experiment are given elsewhere [4-61. The total thickness of the 3~ colloid 
for these runs was =500 pm along 2, perpendicular to a smooth glass wall in the x ,  y 
plane. In the 2~ experiment, the sample geometry is the same, except that a second glass 
plate is brought to within z = 2-2.5 pm of the first. The 2~ sample is rigidly 2 ~ :  it has 
root-mean-square fluctuations out of plane (along z )  smaller than 0 . 0 3 ~  as the in-plane 
density is changed from that of the fluid until that of the crystal just past freezing [3,4].  
The 3~ fluid just before freezing has an in-plane density n = 0,0562 I 0.0004 (in units of 
inverse diameters squared) about 6% lower than nc, that of the FCC (111) face of the 
crystal which nucleates at the glass surface [4]. We image a region of size 
A x  x Ay x A z  = 59 pm X 46 pm X 0.4 pm in the centre of a sample that is times 
larger in linear extent. The depth of focus of the objective lens, i 0 . 2  pm, is comparable 
to a sphere diameter, making it possible to image a single layer of spheres. 

2.2. Density profile of the S ~ f i u i d  perpendicular to a wall 

We have previously shown [ 5 ]  that the variance about the mean of image intensity, a 
measure of image contrast, is directly proportional to average sphere density in rigid 2~ 
layers. We observe sharp distinct peaks in the variance of images of an FCC crystal very 
close to melting as we translate the focus of the lens in the z direction away from the 
glass wall. We also find at least four distinct layers in the 3D fluid near the smooth wall. 
We will discuss our results at length elsewhere [6]. Fluid layering near a hard wall has 
been observed in both simulations [ 7 ]  and density functional theories [8]. What is 
surprising in our experiment is the sharpness of the fluid layers in the z direction, 
with root mean square deviation -0.la comparable to that of the bulk crystal; their 
separation, that of the crystal planes; and a growing correlation length perpendicular to 
the wall very close to the freezing transition. At the same time, the fluid in-plane 
correlations remain very short ranged, with a correlation length of =2a even for the first 
layer of the fluid just before freezing, upon which we will now focus our attention. As 
the 3~ first layer is so sharp, it is interesting to contrast its structure and microscopic 
particle dynamics to a rigid 2D layer at the same in-plane density. 

2.3. In-plane microscopic structure of the first 3 ~ f i u i d  layer-comparison with 20 

The particle center locations in each video frame are used to determine in-plane density, 
correlation functions, structure factors, and topological defects [3-5]. The 2~ layer 
has 84% perfect sixfold coordination, while the 3~ first layer has only 67% sixfold 
coordination. The contrast in defect densities in the 2~ and 3~ layers is apparent in their 
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Figure 1 .  In-plane pair correlation functions for 
the first 3D fluid layer with in-plane density n = 
0.94nC (shifted +3  vertically) and a ?D layer with 
the same in-plane density. The lines through the 
data points are fits to an exponentially decaying 
broadened perfect hexagonal g(r ) .  The in-plane 
correlation length j” is marked by the arrows for 
each curve. 
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Figure 2. Top: distributions N ( r ,  t )  normalized to 
the total number of spheres for t = 0.05 s (full 
circles) and0.2 s (open circles) for the first 3~ fluid 
layerwithn = 0.94n,, displacedvertically by0,45; 
and for the ZD layer with the same density. 
Bottom: mean squared in-plane distance moved 
versus time for the 3D and ZD layers. The broken 
line depicts a slope of 2 0 , )  = 2 X 0.89DS,,,,,. The 
full lines have slopes 203D = 2 x 0.29D0 and 
2D2, = 2 X 0.160,,. 

in-plane pair correlation functions, shown in figure 1. The 3D in-plane correlation length 
E3D = 2a, while the ZD correlation length EzD f 5a. At this density, the 2D sample is just 
inside the intermediate region or hexatic phase at the fluid-hexatic border [4]. 

2.4. Dynamics of the first so fluid layer-comparison with 2D 

The time decay of the first ring at K = K O  of the in-plane intermediate scattering function 
F ( K ,  t )  gives an estimate of the lifetime of fluctuations with sixfold order at the crystal 
row spacing V%$! = 27d/K0. These fluctuations are roughly the size of the correlation 
length 6 determined from g(r) .  We take for an ‘atomic’ or sphere-sphere collision time 
for this Brownian dynamical system z, = (O.la)*/DO = 0.03 s in our case, where Do is 
the Stokes self-diffusion coefficient for a single sphere moving parallel to a hard wall a 
distance of four sphere diameters away [9]. We define a ‘correlation time’ z as the 
lifetime of the ordered patches determined from the slope of log F(Ko ,  t )  versus t for 
0 s t s 0.2 s. We find t 3 D  = 0.25 s and zZD = 1 s or 8-30 collision times for the 3~ and 2~ 
layers, respectively. 

For both samples, the in-plane displacement distributions, N ( r ,  t ) ,  of ==14UU interior 
spheres in our imaging region after a time interval tare well represented by the Brownian 
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form Y exp( -r2/(4 D(t)f)) in the time intervals t = M x 0.05 s, M = 1-4, as shown in 
figure 2. For t = 0.2 s ,  3.8% of the spheres in the 3D first layer have hopped to or from 
the second layer. Also shown in figure 2 are the mean square in-plane displacements 
( r 2 ( t ) )  = 20(t)t of the spheres, determined from the fits to N ( r ,  t ) ,  with D(t )  the (time 
dependent) self-diffusion coefficient. The mean square displacements are linear in time 
to within experimental error after approximately one collision time t,, marked on the 
graph. Thus we see the 'cage effect' on the self-diffusion of these dense fluids [lo] in 
roughly one collision time. From the subsequent slopes of the mean squared dis- 
placements, we estimate the later time self-diffusion coefficients to be D,, = 
0.18 ? 0.02 pm2 s-' = 0.29 Do, and D,, = 0.10 2 0.01 pm2 s-' = 0.160,. Since the in- 
plane densities of the two samples are identical, and the vast majority (96%) of the 3~ 
spheres remain in the first layer on this timescale (with root mean fluctuations out of 
plane -0. l a  in comparison to - 0 . 0 3 ~  for the 2D layer), the factor of four difference in 
correlation time and nearly factor of two difference in the self-diffusion coefficients in 
the first 3~ layer and the 2~ layer must arise from the high degree of in-plane order of 
the 2~ fluid compared to that of the 3D layer. 

Acknowledgments 

We acknowledge many valuable discussions with George Gilmer, Wim van Saarloos 
and John Weeks. 

References 

[ 11 A review on the use of colloidal spheres to study condensed matter physics is given in 

[2] Hess W and Klein R 1983 A d o .  Phys. 32 173 
[ 3 ]  Murray C A and Van Winkle D H 1987 Phys. Reu. Lett. 58 1200 

[4] Murray C A  and Wenk R A  1990 Phys. Reu. B 42 688 
[5] Van Winkle D H and Murray C A 19885. Chem. Phys. 89 3885 
[6] Murray C A ,  Sprenger W 0 and Wenk R A  to be published 
[7] Magda J J .  Tirrell M and Davis H T 1985 J .  Chem. Phys. 83 1888 and references therein 
[ X I  Evans R 1989 Microscopic theories of simple fluids and their interfaces Liquids atlnterfaces (Les Houches 

Session XLVIII,  1988) ed J Charolin, J F Joanny and J Zinn-Justin (Amsterdam: Elsevier) ch 1,  and 
references therein 

[9] Happel J and Brenner H 1973 Low Reynolds Number Hydrodynamics 2nd edn (Dordrecht: Nijhoff) 
ch 7 

Pieranski P 1983 Conremp. Phys. 24 25 

Murray C A .  Van Winkle D H and Wenk R A  1990 Phase Trans. 21 93 

[lo] Pusey P N and Tough R J A 1982J. Phys. A :  Math. Gen. 15 1291 
Nagele G,  Medina-Noyola M. Klein R and Arauza-Lara J L 1988 Physica A 149 123 


